$latex \left[ \begin{array}{l}{{x}_{1}}=\frac{-b-\sqrt{\Delta }}{2a}\\{{x}_{2}}=\frac{-b+\sqrt{\Delta }}{2a}\end{array} \right.$
\[\frac{{ – b \pm \sqrt {{b^2} – 4ac} }}{{2a}}\]
\[\displaystyle\frac{{ – b \pm \sqrt {{b^2} – 4ac} }}{{2a}}\]
$\displaystyle\frac{x + 1}{x - 1} $
$\displaystyle\frac{x + 1}{x - 1} $
$ \dfrac{x + 1}{x - 1} $
$b)\,\,\frac{x}{3}\,\, - \,2 = \,0$
$ b)\,\,\dfrac{x}{3}\,\, - \,2 = \,0$
$ \ln \dfrac{x^{2} + 1}{2} $
$ \begin{cases} x - y = 2 \\ x + y = 4 \end{cases} $
$ \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{a} = \dfrac{a^{2}}{ab} + \dfrac{b^{2}}{bc} + \dfrac{c^{2}}{ca} \ge \dfrac{(a + b + c)^{2}}{ab + bc + ca} = \dfrac{a^{2} + b^{2} + c^{2} + 2(ab + bc + ca)}{ab + bc + ca} $
$ = \dfrac{a^{2} + b^{2} + c^{2}}{ab + bc + ca} + 2 \ge 1 + 2 = 3 $
$ \begin{aligned} \frac{a}{b} + \frac{b}{c} + \frac{c}{a} & = \frac{a^{2}}{ab} + \frac{b^{2}}{bc} + \frac{c^{2}}{ca} \ge \frac{(a+b+c)^{2}}{ab+bc+ca} = \frac{a^{2} + b^{2} + c^{2} + 2(ab+bc+ca)}{ab + bc + ca} \\ & = \frac{a^{2} + b^{2} + c^{2}}{ab + bc + ca} + 2 \ge 1 + 2 = 3 \end{aligned}$
$ \begin{aligned} abc + bcd + cda + dab & = ab ( c + d) + cd ( a + b ) \\ & \leq \sqrt{ab} \cdot \frac{a+b}{2} \cdot ( c + d ) + \sqrt{cd} \cdot \frac{c + d}{2} \cdot ( a + b ) \\ & = \frac{1}{2} ( a + b ) ( c + d ) \left( \sqrt{ab} + \sqrt{cd} \right) \leq 4. \end{aligned} $
$ \left( \dfrac{a}{b} + x + y + z + \right. $
$ \left.\dfrac{a}{b} + x + y + z \right) $
$ \displaystyle \int_{1}^{3} \frac{1}{x + 1} \mbox{d}x $
$ \displaystyle \sum \limits_{i = 1}^{10} i $
$ \begin{aligned} \frac{a}{b} + \frac{b}{c} + \frac{c}{a} & = \frac{a^{2}}{ab} + \frac{b^{2}}{bc} + \frac{c^{2}}{ca} \ge \frac{(a+b+c)^{2}}{ab+bc+ca} = \frac{a^{2} + b^{2} + c^{2} + 2(ab+bc+ca)}{ab + bc + ca} \\ & = \frac{a^{2} + b^{2} + c^{2}}{ab + bc + ca} + 2 \ge 1 + 2 = 3 \end{aligned}$
$ \begin{aligned} abc + bcd + cda + dab & = ab ( c + d) + cd ( a + b ) \\ & \leq \sqrt{ab} \cdot \frac{a+b}{2} \cdot ( c + d ) + \sqrt{cd} \cdot \frac{c + d}{2} \cdot ( a + b ) \\ & = \frac{1}{2} ( a + b ) ( c + d ) \left( \sqrt{ab} + \sqrt{cd} \right) \leq 4. \end{aligned} $
$ \left( \dfrac{a}{b} + x + y + z + \right. $
$ \left.\dfrac{a}{b} + x + y + z \right) $
$ \displaystyle \int_{1}^{3} \frac{1}{x + 1} \mbox{d}x $
$ \displaystyle \sum \limits_{i = 1}^{10} i $
Nhận xét của bạn