latex[x1=−b−√Δ2ax2=−b+√Δ2a
–b±√b2–4ac2a
\[\displaystyle\frac{{ – b \pm \sqrt {{b^2} – 4ac} }}{{2a}}\]
x+1x−1
$\displaystyle\frac{x + 1}{x - 1} $
x+1x−1
b)x3−2=0
$ b)\,\,\dfrac{x}{3}\,\, - \,2 = \,0$
lnx2+12
{x−y=2x+y=4
ab+bc+ca=a2ab+b2bc+c2ca≥(a+b+c)2ab+bc+ca=a2+b2+c2+2(ab+bc+ca)ab+bc+ca
=a2+b2+c2ab+bc+ca+2≥1+2=3
ab+bc+ca=a2ab+b2bc+c2ca≥(a+b+c)2ab+bc+ca=a2+b2+c2+2(ab+bc+ca)ab+bc+ca=a2+b2+c2ab+bc+ca+2≥1+2=3
abc+bcd+cda+dab=ab(c+d)+cd(a+b)≤√ab⋅a+b2⋅(c+d)+√cd⋅c+d2⋅(a+b)=12(a+b)(c+d)(√ab+√cd)≤4.
(ab+x+y+z+
ab+x+y+z)
∫311x+1dx
10∑i=1i
ab+bc+ca=a2ab+b2bc+c2ca≥(a+b+c)2ab+bc+ca=a2+b2+c2+2(ab+bc+ca)ab+bc+ca=a2+b2+c2ab+bc+ca+2≥1+2=3
abc+bcd+cda+dab=ab(c+d)+cd(a+b)≤√ab⋅a+b2⋅(c+d)+√cd⋅c+d2⋅(a+b)=12(a+b)(c+d)(√ab+√cd)≤4.
(ab+x+y+z+
ab+x+y+z)
∫311x+1dx
10∑i=1i
Nhận xét của bạn